Temperature-Robust Neural Function from Activity-Dependent Ion Channel Regulation
نویسندگان
چکیده
Many species of cold-blooded animals experience substantial and rapid fluctuations in body temperature. Because biological processes are differentially temperature dependent, it is difficult to understand how physiological processes in such animals can be temperature robust [1-8]. Experiments have shown that core neural circuits, such as the pyloric circuit of the crab stomatogastric ganglion (STG), exhibit robust neural activity in spite of large (20°C) temperature fluctuations [3, 5, 7, 8]. This robustness is surprising because (1) each neuron has many different kinds of ion channels with different temperature dependencies (Q10s) that interact in a highly nonlinear way to produce firing patterns and (2) across animals there is substantial variability in conductance densities that nonetheless produce almost identical firing properties. The high variability in conductance densities in these neurons [9, 10] appears to contradict the possibility that robustness is achieved through precise tuning of key temperature-dependent processes. In this paper, we develop a theoretical explanation for how temperature robustness can emerge from a simple regulatory control mechanism that is compatible with highly variable conductance densities [11-13]. The resulting model suggests a general mechanism for how nervous systems and excitable tissues can exploit degenerate relationships among temperature-sensitive processes to achieve robust function.
منابع مشابه
Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملNeuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila.
The development of the nervous system is influenced by environmental factors. Among all environmental factors, temperature belongs to a unique category. Besides activating some specific sensory pathways, it exerts nonspecific, pervasive effects directly on the entire nervous system, especially in exothermic species. This study uses mutants to genetically discover how temperature affects nerve t...
متن کاملActivity-Dependent Feedback Regulates Correlated Ion Channel mRNA Levels in Single Identified Motor Neurons
Neurons generate cell-specific outputs via interactions of conductances carried by ion channel proteins that are homeostatically regulated to maintain key quantitative relationships among subsets of conductances. Given the challenges of both normal channel protein turnover and short-term plasticity, how is the balance of membrane conductances maintained over long-term timescales to ensure stabl...
متن کاملP 134: Use of Zinc in Drugs to Improve Neuroinflammation Disease
Zinc is a substance that regulates neural excitability by binding whit sodium channel and potassium channel. The efficiency of free zinc ion, make down the neural survival rate, reduced the peak amplitude of Na+ and make depolarization Na channel, increased the peak amplitude of transition outward k+ currents and delayed rectifier. Also it is an effective blocker of one subtype of tetrodoxine (...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016